【C#】ルンゲクッタ法のプログラム

この記事では、C#言語でルンゲクッタ法(Runge Kutta Method)により常微分方程式の解を求めるプログラムについてソースコード付きで解説します。

ルンゲクッタ法

ルンゲクッタ法は、常微分方程式を近似的に解くアルゴリズムの1つです。
【参考】ルンゲクッタ法のアルゴリズム

今回は、このアルゴリズムをC言語で実装してみました。

ソースコード

サンプルプログラムのソースコードです。

■calc(double x0, double t0, double tn, int n)
x0:初期条件
t0、tn:区間[t0, tn]
n:分割数

実行結果

サンプルプログラムの実行結果です。
時間tが0~1の区間を100分割して以下の微分方程式(RC回路の出力電圧v)を順に計算しています。

(1) \begin{eqnarray*} \frac{dv(t)}{dt}=\frac{e-v(t)}{rc} \end{eqnarray*}

e:入力電圧[V]、v:出力電圧[V]、r:抵抗[Ω]、c:コンデンサ容量[F]

x(0.010000)=0.951625
x(0.020000)=1.812691
x(0.030000)=2.591816

x(0.980000)=9.999445
x(0.990000)=9.999498
x(1.000000)=9.999546

過渡応答により、時間経過につれて入力電圧10[V]に近づいています。

【関連記事】
C#で数値計算処理
C#入門
数値計算プログラミング入門

シェア&フォローお願いします!