数珠順列とは(計算式・例題)

スポンサーリンク

この記事では、確率における数珠順列(ネックレス)の意味と計算式について解説します。

スポンサーリンク

意味・計算式

順列とは、n個からk個を「順に取り出ときの選び方の総数」です。
円状に並べる順列のうち数珠など「裏返しが可能」な場合、表裏を区別できません。
そのため、並べ方の総数が円順列の半数となります。
※円順列は表裏を区別できる

(例)
円順列・・・円卓
数珠順列・・・ネックレス、数珠

【計算式】
異なるn個のものを円形に並べる順列の数は

(1) \begin{eqnarray*} \frac{(n-1)!}{2} \end{eqnarray*}

となります。

例題

【問題①】
5個の色違いの石で首飾りを作ると何通りできるか。

【解答例①】
首飾りは数珠順列なので

(2) \begin{eqnarray*} \frac{(n-1)!}{2}=\frac{4\times 3\times 2\times 1}{2}=12 \end{eqnarray*}

【関連記事】
確率入門
統計入門
高校数学入門

スポンサーリンク

シェア&フォローお願いします!