【応用数学】確率・統計、数値解析、数式処理、グラフ理論、待ち行列理論

確率・統計、数値解析、数式処理、グラフ理論、待ち行列理論についてまとめました。

【確率・統計】

確率・統計
マルコフ決定過程(MDP) マルコフ決定過程(Markov decision process: MDP)とは、次に起こる事象の確率が、これまでの過程と関係なく、現在の状態によってのみ決定される確率過程のことです。このような、以前の状態に依存しない性質のことを「マルコフ性」といいます。
相関係数 2つの項目の関連度合いを示す値(-1~+1の実数値をとる)です。値としての間をとり、-1 に近ければ負の相関、+1 に近ければ正の相関、0に近いときは無相関となります。ここで、負の相関は正に比べて関連性が弱いわけではなく、-1に近づくほど相関が強いことに注意。変量間の関係が非線形のときは,相関係数が負になり、負の傾きをもつ直線周辺に標本点が集まります。

【数値解析】

数値解析
二分法
オイラー法
ニュートン法
ルンゲクッタ法

【数式処理】

【グラフ理論】

【待ち行列理論】

関連記事
1 【情報処理入門】基礎用語・原理・資格まとめ
コンピュータ
技術雑記

コメント

タイトルとURLをコピーしました